

Understanding and Using eMMC Replay Protected Memory Block (RPMB)

1. Introduction
Modern embedded systems demand secure, tamper-resistant storage for sensitive information such as

cryptographic keys, counters, and authentication tokens. The Replay Protected Memory Block (RPMB) feature

of eMMC devices provides a secure partition with replay protection, integrity verification, and access control.

RPMB was introduced in JEDEC eMMC version 4.4. In eMMC devices that comply with JEDEC 4.4 or higher

versions, the RPMB partition should be readily available.

This application note introduces the RPMB concept, describes the basic setup process, outlines common use

cases, and provides guidelines for system integration. The document assumes that the readers have basic

knowledge of eMMC operations, as well as security algorithms such as symmetric keys, SHA (Secure Hash

Algorithm), and MAC (Message Authentication Code). This document also uses Linux OS as an example to

show how the host interacts with the eMMC device for accessing the RPMB partition.

2. RPMB Overview
Typically, an eMMC device has boot partitions, user data areas and one RPMB partition. The RPMB is a special

partition in the eMMC device designed for secure data storage.

Figure 1: eMMC partitions

To access the RPMB partition, the host must first install a secret key (typically a 32-byte random number) to

the RPMB, then make use of the key to perform authenticated transactions to access the RPMB. Figure 2

shows a general flow of the authenticated transactions.

Figure 2: RPMB Authenticated Transactions

When initiating a transaction, the host uses SHA-256 algorithm to generate a MAC from the message payload

to be transmitted. The value of the monotonic counter, which should be synchronized with the eMMC device,

is included in the MAC calculation. This MAC is verified at the device side using the same key to ensure

authenticity. The details of the operations are discussed in the following sections of this document.

Unlike normal user data areas:

• RPMB is not directly addressable by standard eMMC read/write commands.

• Access is performed using a frame-based protocol via standard eMMC commands (CMD23, CMD25,

AN200010

Author: Zhi Feng
Associated Part Family:S40FCxxx

www.skyhighmemory.com Document Number: 002-00010 Page 1 of 7

CMD18, etc.).

• Each RPMB operation uses a 512-byte frame, containing fields such as address, data, nonce, write

counter, MAC, and result code.

• Data integrity and authenticity are ensured using a symmetric authentication key and HMAC (SHA-256).

Figure 3: Example of an RPMB data frame

The last 2B in the RPMB frame indicate the Request or the Response type of the RPMB operations. JEDEC84-

B51 defines all request and response types in Table 18.

To initiate or respond to an RPMB operation, the host or the eMMC device must construct the frame according

to the definition. The MAC field is calculated as follows, with all data fields in the frame:

MAC = HMAC(Key, data+nonce+write_counter+address+block_count+result+request/response)

To simplify the user software implementation, latest embedded Linux systems have included mmc drivers

that support RPMB operations. Users can just invoke standard driver APIs to access the RPMB partition.

The open source code, mmc_utils, that exists in standard Linux distributions, is used in this document to

show how basic RPMB operations are done.

www.skyhighmemory.com Document Number: 002-00010 Page 2 of 7

Understanding and Using eMMC RPMB

3. RPMB Operations

3.1 Initial Provisioning

Users may verify the RPMB partition size by reading the eMMC EXT_CSD[168]. If the field value is non-zero,

RPMB partition is available. The value ranges from 0x01(1x128KB) to 0x80 (128x128KB=16MB). Current

RPMB size is limited to maximum 16MB due to the address field inside the RPMB frame is limited to 2 bytes.

All SkyHighMemory eMMC devices have an RPMB partition with 4MB size.

On Linux systems, once the eMMC is initialized, the RPMB partition is seen under /dev/. For example:

The RPMB partition requires an initial provisioning of the authentication key for normal operations. This key

must be created with a cryptographically strong random generator, unique per device, and securely

programmed into the eMMC and host at manufacturing time, never exposed in plaintext thereafter. Typically,

this step is done inside a secure facility.

The RPMB key is 32-byte in length. After preparing the key, the user can use the following command to install

the key into the RPMB partition. Note that this is a one-time operation. No reversal is allowed. The example

below uses openssl to generate the key and shows how the key is installed.

If the key injection is successful, the initial provisioning step is done. The RPMB is ready for authenticated read

and write operations.

The following diagram shows the RPMB frame flows for a key injection operation:

Figure 4: Example of RPMB Key Programming

www.skyhighmemory.com Document Number: 002-00010 Page 3 of 7

Understanding and Using eMMC RPMB

3.2 Authenticated Write Operations

Within the RPMB partition, memory is organized into blocks, 256B each in size. Users can select any block to

write into. No erase function is provided, but authenticated users can modify the data by writing new data into

the same block.

To do a write operation, the host must possess the correct key, obtain the current monotonic counter value

from the eMMC, then prepare the data frame to write to the RPMB partition. If the data are to be written to

multiple blocks, the host can send multiple frames (CMD25) in one write operation. In this case, only the last

frame should contain the valid MAC, which is calculated from data concatenated from all frames. Prior frames

should have 0 values in the MAC field. All frames should have the same write counter value. The entire multi-

block write operation is treated as a single write operation. That means the counter will be incremented by 1 if

the write is successful.

The following command sequence on Linux shows an example of write operations.

Because the value of the monotonic counter increases by 1 after each successful write operation, the same

data frame cannot be recorded and replayed at a later time; therefore, the RPMB contents are protected from

replay attacks.

Reading the monotonic counter value is not a secure operation. The host can synchronize the counter with the

eMMC device by retrieving the counter value before a write operation. The following diagrams show the RPMB

frame flows for a read counter operation and an authenticated write operation:

Figure 5: Example of RPMB Read Counter

www.skyhighmemory.com Document Number: 002-00010 Page 4 of 7

Understanding and Using eMMC RPMB

Figure 6: Example of RPMB Authenticated Write Operation

3.3 Read Operations (Authenticated or not)

The RPMB partition supports authenticated and non-authenticated read operations. That means the host can

choose to read out data from the RPMB with or without the key. When using the key, the host can validate the

authenticity, as well as the integrity of the data. When not using the key, the RPMB still outputs the data, but

the authenticity is not guaranteed.

Note that the value of the monotonic counter does not change after a read operation. The host can choose to

provide the key or not when reading.

The following diagram shows the RPMB frame flow for a read operation:

Figure 7: Example of RPMB Read Operation

www.skyhighmemory.com Document Number: 002-00010 Page 5 of 7

Understanding and Using eMMC RPMB

Unlike the sequence flow from the write operation, the first CMD23 in a read sequence always sets the number

of blocks to 1, because the host will only send one request frame to the eMMC device, even in multi-block read

situations. For MAC calculation, the read operation follows the same principle. In case of multi-block reads,

only the last frame from the device will contain the valid MAC, which is calculated over the concatenated data

over all frames.

4. Practical Usage of RPMB

As the data in RPMB can be authenticated and protected from replay attacks, RPMB has many useful real-life

applications. For example:

1. Secure key storage: RPMB can be used to store cryptographic keys, certificates, or license tokens, as

the contents from RPMB can be authenticated by the host.

2. Replay-Protected counters: The monotonic counter of the RPMB can be used to keep track of critical

applications that are not supposed to rollback, such as software/firmware versions, automotive

mileage info, etc.

3. Trusted boot: RPMB can be used to store hash values of boot code so that the code can be validated

before running. These hash values are protected from tampering inside the RPMB.

4. Sensitive logging data: RPMB provides tamper-resistant logging for sensitive data such as automotive

mileage, accident logs, and maintenance information.

5. Implementation Considerations

1. Key management: The RPMB key must be securely provisioned, usually during manufacturing in a

secure facility, and never exposed in plaintext.

2. Performance: RPMB access is slower than normal eMMC operations due to authentication and HMAC

processing. It is designed for small data objects, not bulk storage.

3. Error recovery: Always verify the result code after each operation. Design systems to handle cases

such as “key not programmed” or “authentication failure.”

6. Summary

The eMMC RPMB partition provides a secure and replay-protected storage area essential for modern

embedded applications. With careful provisioning and proper integration, RPMB enables robust protection of

keys, counters, and sensitive data, making it a useful tool of secure system design. SkyHighMemory eMMC

devices, which comply with JEDEC eMMC 5.1 standard, provide RPMB functionality to satisfy customers’

requirements of secure storage.

7. References
JESD84-B51, Embedded Multi-Media Card (eMMC) Electrical Standard (5.1)

www.skyhighmemory.com Document Number: 002-00010 Page 6 of 7

Understanding and Using eMMC RPMB

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information

on a SkyHighMemory product under development by SkyHighMemory. SkyHighMemory reserves the right to

change or discontinue work on any product without notice. The information in this document is provided as is

without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular

purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or

statutory. SkyHighMemory assumes no liability for any damages of any kind arising out of the use of the

information in this document.

Copyright © 2025 SkyHighMemory All rights reserved.

www.skyhighmemory.com Document Number: 002-00010 Page 7 of 7

8. Revision History

Understanding and Using eMMC RPMB

Document Title: AN200010 - Understanding and using e.MMC Replay Protected Memory Block (RPMB)

Document Number: 002-00010

ECN No.Rev. Orig. of
Change

Submission
Date Description of Change

Initial version09/08/2025––**

