SkyHigh Memory AN20001 0

Understanding and Using eMMC Replay Protected Memory Block (RPMB)

Author: Zhi Feng
Associated Part Family:S40FCxxx

1. Introduction

Modern embedded systems demand secure, tamper-resistant storage for sensitive information such as
cryptographic keys, counters, and authentication tokens. The Replay Protected Memory Block (RPMB) feature
of eMMC devices provides a secure partition with replay protection, integrity verification, and access control.

RPMB was introduced in JEDEC eMMC version 4.4. In eMMC devices that comply with JEDEC 4.4 or higher
versions, the RPMB partition should be readily available.

This application note introduces the RPMB concept, describes the basic setup process, outlines common use
cases, and provides guidelines for system integration. The document assumes that the readers have basic
knowledge of eMMC operations, as well as security algorithms such as symmetric keys, SHA (Secure Hash
Algorithm), and MAC (Message Authentication Code). This document also uses Linux OS as an example to
show how the host interacts with the eMMC device for accessing the RPMB partition.

2. RPMB Overview

Typically, an eMMC device has boot partitions, user data areas and one RPMB partition. The RPMB is a special
partition in the eMMC device designed for secure data storage.

Boot1 Boot2 RPMB User Data Area

Figure 1: eMMC partitions

To access the RPMB partition, the host must first install a secret key (typically a 32-byte random number) to
the RPMB, then make use of the key to perform authenticated transactions to access the RPMB. Figure 2
shows a general flow of the authenticated transactions.

e.MMC Device Host SoC

SHA-256
(Secret Key)

SHA-256
(Secret Key)

Figure 2: RPMB Authenticated Transactions

When initiating a transaction, the host uses SHA-256 algorithm to generate a MAC from the message payload
to be transmitted. The value of the monotonic counter, which should be synchronized with the eMMC device,
is included in the MAC calculation. This MAC is verified at the device side using the same key to ensure
authenticity. The details of the operations are discussed in the following sections of this document.

Unlike normal user data areas:
+ RPMB is not directly addressable by standard eMMC read/write commands.
» Access is performed using a frame-based protocol via standard eMMC commands (CMD23, CMD25,

www.skyhighmemory.com Document Number: 002-00010 Page 1 of 7

SkyHigh Memory Understanding and Using eMMC RPMB

CMD18, etc.).

+ Each RPMB operation uses a 512-byte frame, containing fields such as address, data, nonce, write
counter, MAC, and result code.

» Data integrity and authenticity are ensured using a symmetric authentication key and HMAC (SHA-256).

Write Block Req/
Data Nonce Counter Address Count Result Resp
196B 32B 256B 16B 4B 2B 2B 2B 2B

Bytes used to calculate the MAC with the symmetric key

\Y,

Figure 3: Example of an RPMB data frame

The last 2B in the RPMB frame indicate the Request or the Response type of the RPMB operations. JEDEC84-
B51 defines all request and response types in Table 18.

Table 18 — RPMB Request/Response Message Types
Request Message Types

0x0001 Authentication key programming request

0x0002 Reading of the Write Counter value -request

0x0003 Authenticated data write request

0x0004 Authenticated data read request

0x0005* Result read request

0x0006 Authenticated Device Configuration write request

0x0007 Authenticated Device Configuration read request
Response Message Types

0x0100 Authentication key programming response

0x0200 Reading of the Write Counter value -response

0x0300 Authenticated data write response

0x0400 Authenticated data read response

0x0500 Reserved

0x0600 Authenticated Device Configuration write response

0x0700 Authenticated Device Configuration read response

NOTE There is no corresponding response type for the Result read request because the reading of the result with

this request 1s always relative to previous programming access.

To initiate or respond to an RPMB operation, the host or the eMMC device must construct the frame according
to the definition. The MAC field is calculated as follows, with all data fields in the frame:

MAC = HMAC(Key, data+nonce+write_counter+address+block count+result+request/response)

To simplify the user software implementation, latest embedded Linux systems have included mmc drivers
that support RPMB operations. Users can just invoke standard driver APIs to access the RPMB partition.
The open source code, mmc_utils, that exists in standard Linux distributions, is used in this document to

show how basic RPMB operations are done.

www.skyhighmemory.com Document Number: 002-00010 Page 2 of 7

SkyHigh Memory Understanding and Using eMMC RPMB

3. RPMB Operations

3.1 Initial Provisioning

Users may verify the RPMB partition size by reading the eMMC EXT_CSDI[168]. If the field value is non-zero,
RPMB partition is available. The value ranges from 0x01(1x128KB) to 0x80 (128x128KB=16MB). Current
RPMB size is limited to maximum 16MB due to the address field inside the RPMB frame is limited to 2 bytes.
All SkyHighMemory eMMC devices have an RPMB partition with 4MB size.

On Linux systems, once the eMMC is initialized, the RPMB partition is seen under /dev/. For example:

Linux >ls /dev/mmcblko*
/dev/mmcb1lk® /dev/mmcblk@boot® /dev/mmcblk@bootl /dev/mmcblkOpl /dev/mmcblkOrpmb

The RPMB partition requires an initial provisioning of the authentication key for normal operations. This key
must be created with a cryptographically strong random generator, unique per device, and securely
programmed into the eMMC and host at manufacturing time, never exposed in plaintext thereafter. Typically,
this step is done inside a secure facility.

The RPMB key is 32-byte in length. After preparing the key, the user can use the following command to install
the key into the RPMB partition. Note that this is a one-time operation. No reversal is allowed. The example
below uses openssl to generate the key and shows how the key is installed.

Linux > openssl rand 32 > key_file

Linux > mmc rpmb write-key /dev/mmcblkOrpmb key_file

If the key injection is successful, the initial provisioning step is done. The RPMB is ready for authenticated read
and write operations.

The following diagram shows the RPMB frame flows for a key injection operation:

Host Device

CMD23[Reliable Write Request=1, number of blocks=1}—»

CMD25[address of Authentication Key Data Packet}———————>

Authentication Key Data Packet >

CMD23[number of blocks=1} >

CMD25[address of Result Register Read Request Packetj———»

Result Register Read Request Packet—————————>

CMD23[number of blocks=1} >

CMD18[data address} -

<————Response for Key Programming Result Request

Figure 4: Example of RPMB Key Programming

www.skyhighmemory.com Document Number: 002-00010 Page 3 of 7

SkyHigh Memory Understanding and Using eMMC RPMB

3.2 Authenticated Write Operations

Within the RPMB partition, memory is organized into blocks, 256B each in size. Users can select any block to
write into. No erase function is provided, but authenticated users can modify the data by writing new data into
the same block.

To do a write operation, the host must possess the correct key, obtain the current monotonic counter value
from the eMMC, then prepare the data frame to write to the RPMB partition. If the data are to be written to
multiple blocks, the host can send multiple frames (CMD25) in one write operation. In this case, only the last
frame should contain the valid MAC, which is calculated from data concatenated from all frames. Prior frames
should have 0 values in the MAC field. All frames should have the same write counter value. The entire multi-
block write operation is treated as a single write operation. That means the counter will be incremented by 1 if
the write is successful.

The following command sequence on Linux shows an example of write operations.

Linux > mmc rpmb read-counter /dev/mmcblkOrpmb
Counter value: 0x00000003

Linux > mmc rpmb write-block /dev/mmcblkérpmb @ payload_data key
Linux > mmc rpmb read-counter /dev/mmcblkOrpmb
Counter value: Ox00000004

Because the value of the monotonic counter increases by 1 after each successful write operation, the same
data frame cannot be recorded and replayed at a later time; therefore, the RPMB contents are protected from
replay attacks.

Reading the monotonic counter value is not a secure operation. The host can synchronize the counter with the
eMMC device by retrieving the counter value before a write operation. The following diagrams show the RPMB
frame flows for a read counter operation and an authenticated write operation:

Host Device

CMD23[number of blocks=1} I
CMD25[address of Counter Read Request Packett——»

Counter Read Request Packet o
CMD23[number of blocks=1} =
CMD18[data address} =
-« Counter Value Response
‘V' ‘V'

Figure 5: Example of RPMB Read Counter

www.skyhighmemory.com Document Number: 002-00010 Page 4 of 7

SkyHigh Memory Understanding and Using eMMC RPMB

Host Device

CMD23[Reliable Write Request=1, number of blocks=n}——>
CMD25[address of Program Data Packet}J—————>

>

Program Data Packet: >

CMD23[number of blocks=1} >
CMD25[address of Result Register Read Request Packet]————>

Result Register Read Request Packet————————>

CMD23[number of blocks=1} —p

CMD18[data address} =

<——Response for Data Programming Result Request———

Figure 6: Example of RPMB Authenticated Write Operation

3.3 Read Operations (Authenticated or not)

The RPMB partition supports authenticated and non-authenticated read operations. That means the host can
choose to read out data from the RPMB with or without the key. When using the key, the host can validate the
authenticity, as well as the integrity of the data. When not using the key, the RPMB still outputs the data, but
the authenticity is not guaranteed.

Linux > mmc rpmb read-counter /dev/mmcblkOrpmb
Counter value: 0x00000005

Linux > mmc rpmb read-block /dev/mmcblk@rpmb 5 1 — key
This is to test RPMB.

Linux > mmc rpmb read-block /dev/mmcblk@rpmb 5 1 -
This is to test RPMB.

Linux > mmc rpmb read-counter /dev/mmcblkOrpmb
Counter value: 0x00000005

Note that the value of the monotonic counter does not change after a read operation. The host can choose to
provide the key or not when reading.

The following diagram shows the RPMB frame flow for a read operation:

Host Device

CMD23[number of blocks=1} >

CMD25[address of Data Read Request Initiation Packet}————>

>
>

Data Read Request Initiation Packet

CMD23[number of blocks=n} =
CMD18[data address}] >
<« Read Data Packet:
7 v

Figure 7: Example of RPMB Read Operation

www.skyhighmemory.com Document Number: 002-00010 Page 5 of 7

SkyHigh Memory Understanding and Using eMMC RPMB

Unlike the sequence flow from the write operation, the first CMD23 in a read sequence always sets the number
of blocks to 1, because the host will only send one request frame to the eMMC device, even in multi-block read
situations. For MAC calculation, the read operation follows the same principle. In case of multi-block reads,
only the last frame from the device will contain the valid MAC, which is calculated over the concatenated data
over all frames.

4. Practical Usage of RPMB

As the data in RPMB can be authenticated and protected from replay attacks, RPMB has many useful real-life
applications. For example:

1. Secure key storage: RPMB can be used to store cryptographic keys, certificates, or license tokens, as
the contents from RPMB can be authenticated by the host.

2. Replay-Protected counters: The monotonic counter of the RPMB can be used to keep track of critical
applications that are not supposed to rollback, such as software/firmware versions, automotive
mileage info, etc.

3. Trusted boot: RPMB can be used to store hash values of boot code so that the code can be validated
before running. These hash values are protected from tampering inside the RPMB.

4. Sensitive logging data: RPMB provides tamper-resistant logging for sensitive data such as automotive
mileage, accident logs, and maintenance information.

5. Implementation Considerations

1. Key management: The RPMB key must be securely provisioned, usually during manufacturing in a
secure facility, and never exposed in plaintext.

2. Performance: RPMB access is slower than normal eMMC operations due to authentication and HMAC
processing. It is designed for small data objects, not bulk storage.

3. Error recovery: Always verify the result code after each operation. Design systems to handle cases
such as “key not programmed” or “authentication failure.”

6. Summary

The eMMC RPMB partition provides a secure and replay-protected storage area essential for modern
embedded applications. With careful provisioning and proper integration, RPMB enables robust protection of
keys, counters, and sensitive data, making it a useful tool of secure system design. SkyHighMemory eMMC
devices, which comply with JEDEC eMMC 5.1 standard, provide RPMB functionality to satisfy customers’
requirements of secure storage.

7. References
JESD84-B51, Embedded Multi-Media Card (eMMC) Electrical Standard (5.1)

www.skyhighmemory.com Document Number: 002-00010 Page 6 of 7

SkyHigh Memory Understanding and Using eMMC RPMB

8. Revision History

Document Title: AN200010 - Understanding and using e.MMC Replay Protected Memory Block (RPMB)
Document Number: 002-00010

9. of — —
Rev. ECN No. 8,';':3‘;8 Subglaltseswn Description of Change

> - - 09/08/2025 |Initial version

Trademarks and Notice

The contents of this document are subject to change without notice. This document may contain information
on a SkyHighMemory product under development by SkyHighMemory. SkyHighMemory reserves the right to
change or discontinue work on any product without notice. The information in this document is provided as is
without warranty or guarantee of any kind as to its accuracy, completeness, operability, fitness for particular
purpose, merchantability, non-infringement of third-party rights, or any other warranty, express, implied, or
statutory. SkyHighMemory assumes no liability for any damages of any kind arising out of the use of the
information in this document.

Copyright © 2025 SkyHighMemory All rights reserved.

www.skyhighmemory.com Document Number: 002-00010 Page 7 of 7

